Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes.

Identifieur interne : 004A66 ( Main/Exploration ); précédent : 004A65; suivant : 004A67

Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes.

Auteurs : J B Hollick [États-Unis] ; M P Gordon

Source :

RBID : pubmed:7480333

Descripteurs français

English descriptors

Abstract

The wound-inducible win3 multigene family from hybrid poplars (Populus trichocarpa x Populus deltoides) encodes proteins with structural similarities with Kunitz-type protease inhibitors (H.D. Bradshaw Jr., J.B. Hollick, T.J. Parsons, H.R.G. Clarke, M.P. Gordon [1990] Plant Mol Biol 14: 51-59), and at least one member, win3.12, is transcribed de novo in the injured and uninjured leaves of wounded trees (J.B. Hollick, M.P. Gordon [1993] Plant Mol Biol 22: 561-572). A previous study demonstrated that 1352 bp of 5' flanking DNA from the win3.12 gene confers local wound-regulated expression of the beta-glucuronidase gene in transgenic tobacco (Nicotiana tabacum cv Xanthi n.c.) (J.B. Hollick, M.P. Gordon [1993] Plant Mol Biol 22: 561-572). We extend this transgenic analysis here by examining the developmental regulation and systemic wound induction conferred by the same transgene construct in tobacco. Biochemical and histochemical surveys of beta-glucuronidase activity are described for four, independent transgenic lines. The observed spatial and temporal expression patterns coincide with dormant storage tissues and with previously described expression patterns for both seed and vegetative storage protein genes. Developmental northern blot analysis of win3 RNA levels in poplar seeds confirms that proper temporal expression of the reporter gene is maintained during tobacco seed maturation. These results demonstrate that a putative Kunitz-type protease inhibitor can be wound inducible in addition to being expressed in developing seeds.

DOI: 10.1104/pp.109.1.73
PubMed: 7480333
PubMed Central: PMC157565


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes.</title>
<author>
<name sortKey="Hollick, J B" sort="Hollick, J B" uniqKey="Hollick J" first="J B" last="Hollick">J B Hollick</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of Washington, Department of Biochemistry, Seattle 98195-7610, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Washington, Department of Biochemistry, Seattle 98195-7610</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gordon, M P" sort="Gordon, M P" uniqKey="Gordon M" first="M P" last="Gordon">M P Gordon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:7480333</idno>
<idno type="pmid">7480333</idno>
<idno type="pmc">PMC157565</idno>
<idno type="doi">10.1104/pp.109.1.73</idno>
<idno type="wicri:Area/Main/Corpus">004A76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004A76</idno>
<idno type="wicri:Area/Main/Curation">004A76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004A76</idno>
<idno type="wicri:Area/Main/Exploration">004A76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes.</title>
<author>
<name sortKey="Hollick, J B" sort="Hollick, J B" uniqKey="Hollick J" first="J B" last="Hollick">J B Hollick</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of Washington, Department of Biochemistry, Seattle 98195-7610, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Washington, Department of Biochemistry, Seattle 98195-7610</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gordon, M P" sort="Gordon, M P" uniqKey="Gordon M" first="M P" last="Gordon">M P Gordon</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glucuronidase (genetics)</term>
<term>Models, Genetic (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Plants, Toxic (MeSH)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Seeds (genetics)</term>
<term>Tobacco (genetics)</term>
<term>Trees (genetics)</term>
<term>Trees (growth & development)</term>
<term>Trypsin Inhibitor, Kunitz Soybean (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (croissance et développement)</term>
<term>Arbres (génétique)</term>
<term>Famille multigénique (MeSH)</term>
<term>Glucuronidase (génétique)</term>
<term>Graines (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Inhibiteur trypsique soja Kunitz (génétique)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Tabac (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Végétaux toxiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucuronidase</term>
<term>Plant Proteins</term>
<term>Trypsin Inhibitor, Kunitz Soybean</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Seeds</term>
<term>Tobacco</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Glucuronidase</term>
<term>Graines</term>
<term>Inhibiteur trypsique soja Kunitz</term>
<term>Protéines végétales</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Models, Genetic</term>
<term>Multigene Family</term>
<term>Plants, Genetically Modified</term>
<term>Plants, Toxic</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Modèles génétiques</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Végétaux génétiquement modifiés</term>
<term>Végétaux toxiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The wound-inducible win3 multigene family from hybrid poplars (Populus trichocarpa x Populus deltoides) encodes proteins with structural similarities with Kunitz-type protease inhibitors (H.D. Bradshaw Jr., J.B. Hollick, T.J. Parsons, H.R.G. Clarke, M.P. Gordon [1990] Plant Mol Biol 14: 51-59), and at least one member, win3.12, is transcribed de novo in the injured and uninjured leaves of wounded trees (J.B. Hollick, M.P. Gordon [1993] Plant Mol Biol 22: 561-572). A previous study demonstrated that 1352 bp of 5' flanking DNA from the win3.12 gene confers local wound-regulated expression of the beta-glucuronidase gene in transgenic tobacco (Nicotiana tabacum cv Xanthi n.c.) (J.B. Hollick, M.P. Gordon [1993] Plant Mol Biol 22: 561-572). We extend this transgenic analysis here by examining the developmental regulation and systemic wound induction conferred by the same transgene construct in tobacco. Biochemical and histochemical surveys of beta-glucuronidase activity are described for four, independent transgenic lines. The observed spatial and temporal expression patterns coincide with dormant storage tissues and with previously described expression patterns for both seed and vegetative storage protein genes. Developmental northern blot analysis of win3 RNA levels in poplar seeds confirms that proper temporal expression of the reporter gene is maintained during tobacco seed maturation. These results demonstrate that a putative Kunitz-type protease inhibitor can be wound inducible in addition to being expressed in developing seeds.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7480333</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>11</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>109</Volume>
<Issue>1</Issue>
<PubDate>
<Year>1995</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes.</ArticleTitle>
<Pagination>
<MedlinePgn>73-85</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The wound-inducible win3 multigene family from hybrid poplars (Populus trichocarpa x Populus deltoides) encodes proteins with structural similarities with Kunitz-type protease inhibitors (H.D. Bradshaw Jr., J.B. Hollick, T.J. Parsons, H.R.G. Clarke, M.P. Gordon [1990] Plant Mol Biol 14: 51-59), and at least one member, win3.12, is transcribed de novo in the injured and uninjured leaves of wounded trees (J.B. Hollick, M.P. Gordon [1993] Plant Mol Biol 22: 561-572). A previous study demonstrated that 1352 bp of 5' flanking DNA from the win3.12 gene confers local wound-regulated expression of the beta-glucuronidase gene in transgenic tobacco (Nicotiana tabacum cv Xanthi n.c.) (J.B. Hollick, M.P. Gordon [1993] Plant Mol Biol 22: 561-572). We extend this transgenic analysis here by examining the developmental regulation and systemic wound induction conferred by the same transgene construct in tobacco. Biochemical and histochemical surveys of beta-glucuronidase activity are described for four, independent transgenic lines. The observed spatial and temporal expression patterns coincide with dormant storage tissues and with previously described expression patterns for both seed and vegetative storage protein genes. Developmental northern blot analysis of win3 RNA levels in poplar seeds confirms that proper temporal expression of the reporter gene is maintained during tobacco seed maturation. These results demonstrate that a putative Kunitz-type protease inhibitor can be wound inducible in addition to being expressed in developing seeds.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hollick</LastName>
<ForeName>J B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>University of Washington, Department of Biochemistry, Seattle 98195-7610, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gordon</LastName>
<ForeName>M P</ForeName>
<Initials>MP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM07270</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9088-41-9</RegistryNumber>
<NameOfSubstance UI="D014360">Trypsin Inhibitor, Kunitz Soybean</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010947" MajorTopicYN="N">Plants, Toxic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="Y">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014360" MajorTopicYN="N">Trypsin Inhibitor, Kunitz Soybean</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>9</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7480333</ArticleId>
<ArticleId IdType="pii">109/1/73</ArticleId>
<ArticleId IdType="pmc">PMC157565</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.1.73</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1979 Jun;63(6):1123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 May;102(1):53-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Jun;10(6):1469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2026144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Nov;97(3):1017-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Feb;3(2):191-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8220442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Jul;17(1):49-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1907871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 May;233(1-2):53-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1376407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Jan;14(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2101311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Apr;83(7):2123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Jan;89(1):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1967 Jun 3;214(5092):1047-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6055406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Jun;102(2):639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8108514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1964 Mar 26;15(3):230-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5891037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Nov;235(2-3):389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1465111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Feb;3(2):261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8106080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Jul;22(4):561-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8343595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Oct;13(4):347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Apr;14(4):575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2102836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Nov;13(5):563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1992 Sep;2(5):685-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1302628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Nov;1(11):1079-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2562561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1986 Sep;114(1):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17246346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Mar;5(3):496-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):859-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 20;6(13):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Aug;25(5):799-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8075397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1985 Dec 1;4(12):3047-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Sep;4(9):1157-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1392612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jun;99(2):422-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1059-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Sep;19(6):951-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1511140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Mar;5(3):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8467221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Feb;104(2):439-444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 1986;11(2):107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2426570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Gordon, M P" sort="Gordon, M P" uniqKey="Gordon M" first="M P" last="Gordon">M P Gordon</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Hollick, J B" sort="Hollick, J B" uniqKey="Hollick J" first="J B" last="Hollick">J B Hollick</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004A66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004A66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7480333
   |texte=   Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7480333" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020